

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 1 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Safety Manual Eclipse USBX

Version 6

Revision 6.1.11
The high-performance USB stack from Eclipse Foundation

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 2 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Disclaimer

This document is just a sample of the Functional Safety related documentation of the Eclipse
USBX which is part of the Eclipse ThreadX Project.
This document is not intended for use.
This document and the associated software, while following the sample principles as the
previously certified versions of the Eclipse ThreadX project, are not in any way certified.

Copyright

Copyright ©2024 Eclipse Foundation AISBL. All Rights Reserved.
This document is the sole property of the Eclipse Foundation. Your use of this document is under
the terms of the CC-BY-NC-ND 4.0 licence [CC-BY-NC-ND-4.0].

The Eclipse Foundation reserves the right to make changes to the specifications described herein
at any time and without notice in order to improve design or reliability of Eclipse ThreadX.
The information in this document has been carefully checked for accuracy; however, the Eclipse
Foundation makes no warranty pertaining to the correctness of this document.

Licence

CC-BY-NC-ND
This document is publicly shared under the CC BY-NC-ND 4.0 Deed
Attribution-NonCommercial-NoDerivs 4.0 International [CC-BY-NC-ND-4.0] licence.

Trademarks

ThreadX®, Eclipse ThreadX and the Eclipse ThreadX Logo are trademarks of the Eclipse
Foundation AISBL.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 3 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Table of Contents

1. SCOPE ... 8

1.1. Purpose ... 8
1.2. Reference Standards ... 8
1.3. Safety related applications – requirements on safety lifecycle and the supporting processes 9
1.3.1. Safety related applications – requirements on safety lifecycle planning .. 9
1.3.2. Safety related applications – requirements on documentation... 9
1.3.3. Safety related applications – requirements on configuration management 9
1.3.4. Safety related applications – requirements on change management .. 9
1.3.5. Safety related applications – risk management .. 9
1.4. Safety certifications.. 10

2. OVERVIEW OF USBX ... 10

2.1. USBX features ... 10
2.2. Products Highlights ...11
2.3. Host, Device, OTG & Extensive Class Support ... 12
2.4. Powerful Services of USBX ... 14
2.4.1. Complete USB Device Framework Support ... 14
2.4.2. Easy-To-Use APIs ... 14
2.4.3. Multiple Host Controller Support ... 14
2.4.4. Software Scheduler .. 14
2.5. Required knowledge to integrate USBX .. 14

3. INSTALLATION OF USBX .. 15

3.1. Host Considerations .. 15
3.2. Target Considerations .. 15
3.3. Product Distribution ... 15
3.4. Configuration Options .. 16
3.5. Troubleshooting ... 18
3.6. USBX Version ID ... 18

4. FUNCTIONAL COMPONENTS OF THE USBX ... 18

4.1. Execution Overview of the USB Device Stack .. 18
4.1.1. Initialization ... 19
4.1.2. Application Interface Calls .. 19
4.1.3. USB Device Stack .. 19
4.1.4. USB Device Classes ... 20
4.1.5. VBUS Manager ... 23
4.1.6. Device Controller .. 23
4.1.7. USB Device Framework ... 24
4.2. Execution Overview of the USB Host Stack .. 25
4.2.1. Initialization ... 25
4.2.2. Application Interface Calls .. 26
4.2.3. USB Host Stack .. 26
4.2.4. USB Host Classes .. 29

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 4 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

4.2.5. Host Controller .. 31
4.2.6. USB Device Framework ... 32

5. QUALIFICATION OF THE USBX SOFTWARE .. 34

5.1. Quality Management System .. 34
5.2. USBX Quality Assurance ... 35
a) Requirements ... 36
b) Design .. 36
c) Implementation ... 36
d) Verification .. 37
e) Maintenance ... 37
5.3. Verification of the USBX Software ... 37
5.3.1. Master Test Plan for the USBX 6.1.11 USB access system ... 37
5.3.2. Test Code Coverage Analysis ... 38
5.3.3. USBX Static Analysis .. 38
5.4. Certification of USBX 6.1.11 .. 38

6. CONCLUSION .. 39

6.1. Backward Compatibility ... 39
6.2. Compatibility with other systems ... 39
6.3. Requirements not met ... 39
6.4. Outstanding Anomalies .. 39
6.5. Design Safe State .. 39
6.6. Functional Safety View .. 40
6.7. Data Integrity ... 40
6.8. Interface between the safety related application and USBX stack .. 40

APPENDICES .. 43

Appendix [A]: TERMS AND ACRONYMS .. 43
[A1] Reference Documents.. 43
[A2] Acronyms ... 43

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 5 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

LIST OF FIGURES
Figure 1: The relationship between the USB layers ..11
Figure 2: Illustration of USBX Device Stack ... 19
Figure 3: Illustration of USBX Host stack ... 25
Figure 4: Shell window (excerpt) of the USBX 6.1.11 test suite ... 36
Figure 5: Usage of the USBX Software in a safety related context ... 41

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 6 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

This page is intentionally left blank

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 7 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Guide conventions used

Italics typeface denotes book titles, emphasizes important words, and indicates variables

Bold emphasizes important words

warning symbol draws attention to situations which could cause fatal errors

information symbol draws attention to important or additional information

references to detailed descriptions in USBX User Guide or the demonstration system

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 8 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

1. SCOPE

1.1. Purpose
This Safety Manual provides comprehensive information about Eclipse USBX (hereafter called
USBX), the high-performance USB foundation software from Eclipse Foundation.

This Safety Manual shall be read in context with the ThreadX User Guide [D8] explaining in detail
the capabilities of this RTOS in view of its application in embedded systems and USBX User Guide
[D1] giving information about the high-performance USB stack from Eclipse Foundation.

This manual provides guidance on following safety standards:

• IEC 61508 ([S1])
• IEC 62304 ([S2])
• ISO 26262 ([S3])
• EN 50128 ([S4])

The USBX software version 6 (revision 6.1.11) was assessed by an accredited independent
third-party certification body, for usability in development of safety related software.

Please consider that this certification is related only to unchanged USBX sources!

The USBX certification process by an accredited independent third party covers the generic USBX
parts only

A manufacturer of a safety related application is highly recommended to follow the guidance
of this Safety Manual and of the corresponding USBX Software documentation (e.g., User

 Guides).

1.2. Reference Standards

Doc.
No.

Standard
Reference

Standard Title

[S1] IEC 61508:2010 Functional safety of electrical/electronic/programmable electronic
safety-related systems

[S2] IEC 62304:2015 Medical device software - Software Life Cycle Processes

[S3] ISO 26262:2018 Road vehicles - Functional safety

[S4] EN 50128:2011 Railway applications – Communication, signalling and processing
systems – Software for railway control and protection systems

Table 1: Reference Standards

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 9 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

 1.3. Safety related applications – requirements on safety lifecycle and the
supporting processes
1.3.1. Safety related applications – requirements on safety lifecycle planning

All safety related activities and procedures have to be planned for achieving functional safety.
For that reason, all USBX related activities for a safety related application have to be considered

 in the overall safety plan.

1.3.2. Safety related applications – requirements on documentation

Safety related applications which aim to fulfil the requirements specified in the functional safety
standards [S1] - [S4] have to plan the documentation process in order to:

• Make the documentation available during each phase of the development processes
• Management of Functional Safety
• Make the documentation available for the functional safety assessment.
USBX documentation: Safety Manual, User Guide and Source Code Documentation are
relevant for the product configuration and have to be considered in the documentation process.

1.3.3. Safety related applications – requirements on configuration management

Safety related applications which aim to fulfil the requirements specified in the functional safety
standards [S1] - [S4] have to be uniquely identified and reproduced in a controlled manner at

any time. For that reason, the USBX configuration information contained in: Safety Manual, User Guide
and Source Code Documentation shall be considered in customer’s configuration management process.

1.3.4. Safety related applications – requirements on change management

Change Management ensures planning, control, monitoring implementation and documentation
of changes, while maintaining the consistency of each safety related application.

On that reason, all changes in the safety related application have to consider USBX anomalies
and restrictions.

Furthermore, a re-base on a new USBX version during the safety lifecycle of a safety related
application has to consider the USBX documentation related to the new version and to consider
the USBX anomalies and restrictions in view of the application.

1.3.5. Safety related applications – risk management

The safety related applications require hazard analysis and risk assessment or analysis of
software contribution to hazardous situations.
USBX based safety related application has to consider in the hazard analysis and risk
assessment or in the software risk management process all USBX restrictions and anomalies
as specified in this Safety Manual, User Guide and Source Code Documentation.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 10 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

1.4. Safety certifications
The USBX software, version 6 (revision 6.1.11) has been assessed by an accredited independent
third-party certification body (SGS-TÜV Saar GmbH) for usability in safety related systems, which
have been developed according to following standards:

Safety Standard Achieved Integrity Level
IEC 61508 [S1] up to SIL 4

IEC 62304 [S2] SW class C

ISO 26262 [S3] up to ASIL D
EN 50128 [S4] up to SW-SIL 4

For details to the certification refer to [D9].

2. OVERVIEW OF USBX

2.1. USBX features
USBX supports the three existing USB specifications: 1.1, 2.0 and OTG. It is designed to be
scalable and will accommodate simple USB topologies with only one connected device as well as
complex topologies with multiple devices and cascading hubs. USBX supports all the data transfer
types of the USB protocols: control, bulk, interrupt, and isochronous.

USBX supports both the host side and the device side. Each side is comprised of three layers: •

Controller layer
• Stack layer
• Class layer

The relationship between the USB layers is as follows:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 11 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Figure 1: The relationship between the USB layers

2.2. Products Highlights

An overview of the USB stack’s highlights follows:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 12 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Eclipse USBX is a high-performance USB host, device, and on-the-go (OTG) embedded stack.
USBX is fully integrated with Eclipse ThreadX and available for all Eclipse ThreadX–supported
processors. Like ThreadX, USBX is designed to have a small footprint and high performance,
making it ideal for deeply embedded applications that require an interface with USB devices.

2.3. Host, Device, OTG & Extensive Class Support
USBX Host/Device embedded USB protocol stack is an Industrial Grade embedded USB solution
designed specifically for deeply embedded, real-time, and IoT applications. USBX provides host,
device, and OTG support, as well as extensive class support. USBX is fully integrated with Eclipse
ThreadX Real-Time Operating System, Eclipse FileX embedded FAT-compatible file system,
Eclipse NetX, and Eclipse NetX Duo embedded TCP/IP stacks. All of this, combined with an
extremely small footprint, fast execution and superior ease-of-use, make USBX the ideal choice for
the most demanding embedded IoT applications requiring USB connectivity.

USBX memory footprint
USBX has a remarkably small minimal footprint of 10.5 KB of FLASH and 5.1 KB RAM for USBX
Device CDC/ACM support. USBX Host requires a minimum of 18 KB of FLASH and 25 KB of RAM
for CDC/ACM support.
An additional 10 KB to 13 KB of instruction area memory is needed for TCP functionality. USBX
RAM usage typically ranges from 2.6 KB to 3.6 KB plus the packet pool memory, which is defined
by the application.

Like ThreadX, the size of USBX automatically scales based on the services actually used by the
application. This virtually eliminates the need for complicated configuration and build parameters,
making things easier for the developer.

 USB Host Stack USB Device Stack

• Complete ThreadX processor support
• No royalties
• Complete ANSI C source code
• Real-time performance
• Responsive technical support
• Multiple host controller support
• Multiple class support
• Multiple class instances
• Integration of classes with ThreadX,
• FileX and NetX
• Support for USB devices with multiple

configuration
• Support for USB composite devices
• Support for cascading hubs
• Support for USB power management
• Support for USB OTG
• Export trace events for TraceX

• Complete ThreadX processor support
• No royalties
• Complete ANSI C source code
• Real-time performance
• Responsive technical support
• --
• Multiple class support
• Multiple class instances
• Integration of classes with ThreadX,
• FileX and NetX
• Support for USB devices with multiple

configuration
• Support for USB composite devices
• --
• Support for USB power management
• Support for USB OTG
• Export trace events for TraceX

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 13 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

USB Controller support
USBX supports major USB standards like OHCI and EHCI. In addition, USBX supports proprietary
discrete USB host controllers from Atmel, Microchip, Philips, Renesas, ST, TI, and other vendors.
USBX also supports multiple host controllers in the same application (i.e. running concurrently).
USBX supports popular USB device controllers from Analog Devices, Atmel, Microchip, NXP,
Philips, Renesas, ST, TI, and other vendors.

Extensive Class support
USBX Host provides support for most popular classes, including ASIX, AUDIO, CDC/ACM,
CDC/ECM, GSER, HID (keyboard, mouse, and remote control), HUB, PIMA (PTP/MTP), PRINTER,
PROLIFIC, and STORAGE.

USBX Device provides support for most popular classes, including CDC/ACM, CDC/ECM, DFU,
HID, PIMA (PTP/MTP) (w/MTP), RNDIS, and STORAGE. Support for custom classes is also
available.

Pictbridge support
USBX supports the full Pictbridge implementation both on the host and the device. Pictbridge sits
on top of USBX PIMA (PTP/MTP) class on both sides. The PictBridge standards allow the
connection of a digital still camera or a smart phone directly to a printer without a PC, enabling
direct printing to certain Pictbridge aware printers.
When a camera or phone is connected to a printer, the printer is the USB host and the camera is
the USB device. However, with Pictbridge, the camera will appear as being the host and commands
are driven from the camera. The camera is the storage server, the printer the storage client. The
camera is the print client and the printer is of course the print server. Pictbridge uses USB as a
transport layer but relies on PTP (Picture Transfer Protocol) for the communication protocol.

Custom Class support
USBX Host and Device support custom classes. An example custom class is provided in the USBX
distribution. This simple data pump class is called DPUMP and can be used as a model for custom
application classes. Advanced technology USBX Host and Device support custom classes. An
example custom class is provided in the USBX distribution. USBX is advanced technology that
includes:

• Host, Device, and OTG support
• USB low, full, and high-speed support
• Automatic scaling
• Fully integrated with Eclipse ThreadX, Eclipse FileX, and Eclipse NetX
• Optional performance metrics
• Eclipse TraceX system analysis support

USBX supports OTG in the core USB stack. But for OTG to function, it requires a specific USB
controller. USBX OTG controller functions can be found in the usbx_otg directory. The current
USBX version only supports the NXP LPC3131 with full OTG capabilities.

The regular controller driver functions (host or device) can still be found in the standard USBX
usbx_device_controllers and usbx_host_controllers but the usbx_otg directory contains the specific
OTG functions associated with the USB controller.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 14 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

There are four categories of functions for an OTG controller in addition to the usual host/device
functions.

• VBUS specific functions: Each controller needs to have a VBUS manager to change the state
of VBUS based on power management requirements. Usually, this function only performs
turning on or off VBUS.

• Start and Stop of the controller: Unlike a regular USB implementation, OTG requires the host
and/or the device stack to be activated and deactivated when the role changes.

• USB role manager: The USB role manager receives commands to change the state of the
USB.

For more details to the states that need transitions to and from refer to section (USB role
manager in chapter 5 of the USB User Guide (Device Stack) [D1].

• Interrupt handlers: Both host and device controller drivers for OTG needs different interrupt
handlers to monitor signals beyond traditional USB interrupts, in particular signals due to SRP
and VBUS.

2.4. Powerful Services of USBX
2.4.1. Complete USB Device Framework Support

USBX can support the most demanding USB devices, including multiple configurations, multiple
interfaces, and multiple alternate settings.

2.4.2. Easy-To-Use APIs

USBX provides the very best deeply embedded USB stack in a manner that is easy to understand
and use. The USBX API makes the services intuitive and consistent. By using the provided USBX
class APIs, the user application does not need to understand the complexity of the USB protocols.

2.4.3. Multiple Host Controller Support

USBX can support multiple USB host controllers running concurrently. This feature allows USBX to
support the USB 2.0 standard using the backward compatibility scheme associated with most USB
2.0 host controllers on the market today.

2.4.4. Software Scheduler

USBX host contains a USB software scheduler necessary to support USB controllers that do not
have hardware list processing. The USBX software scheduler will organize USB transfers with the
correct frequency of service and priority and will instruct the USB controller to execute each transfer.

2.5. Required knowledge to integrate USBX
USBX is intended for the embedded real-time software developer. The developer should be familiar
with standard real-time operating system functions, the USB specification, and the C programming
language.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 15 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

For technical information related to USB, see the USB specification and USB Class
specifications that can be downloaded at https://www.USB.org/developers

3. INSTALLATION OF USBX

3.1. Host Considerations
Embedded development is usually performed on Windows PC or Unix host computers. After the
application is compiled, linked, and the executable is generated on the host, it is downloaded to the
target hardware for execution.
Usually, the target download is done over an RS-232 serial interface, although parallel interfaces,
USB, and Ethernet are becoming more popular. See the development tool documentation for
available options.
Debugging is done typically over the same link as the program image download. A variety of
debuggers exist, ranging from small monitor programs running on the target through Background
Debug Monitor (BDM) and In-Circuit Emulator (ICE) tools. Of course, the ICE tool provides the most
robust debugging of actual target hardware.
As for resources used on the host, the source code for USBX is delivered in ASCII format and
requires approximately 500 Kbytes of space on the host computer’s hard disk.

Review the supplied readme_usbx_generic.txt file for additional host system considerations
and options

3.2. Target Considerations
USBX requires between 24 KBytes and 64 KBytes of Read Only Memory (ROM) on the target in
host mode. The amount of memory required is dependent on the type of controller used and the
USB classes linked to USBX. Another 32 KBytes of the target’s Random Access Memory (RAM)
are required for USBX global data structures and memory pool. This memory pool can also be
adjusted depending on the expected number of devices on the USB and the type of USB controller.
The USBX device side requires roughly 10-12 KBytes of ROM depending on the type of device
controller. The RAM memory usage depends on the type of class emulated by the device. USBX
also relies on ThreadX semaphores, mutexes, and threads for multiple thread protection, and I/O
suspension and periodic processing for monitoring the USB bus topology.

3.3. Product Distribution
USBX can be obtained from our public source code repository at https://github.com/eclipse-
threadx/usbx.
Following is a list of the important files common to most product distributions:

readme_usbx.txt
This file contains specific information about the USBX port,
including information about the target processor and the
development tools.

ux_api.h This C header file contains all system equates, data structures,
and service prototypes.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://www.usb.org/developers
https://www.usb.org/developers
https://www.usb.org/developers
https://github.com/eclipse-threadx/usbx
https://github.com/eclipse-threadx/usbx
https://github.com/azure-rtos/usbx/

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 16 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

ux_port.h This C header file contains all development-tool--specific data
definitions and structures.

ux.lib This is the binary version of the USBX C library. It is distributed
with the standard package.

demo_usbx.c The C file containing a simple USBX demo

All files are in lower-case, making it easy to convert the commands to Linux (Unix)
development platforms.

USBX is installed by cloning the GitHub repository to your local machine. The following is typical
syntax for creating a clone of the USBX repository on your PC:
git clone https://github.com/eclipse-threadx/usbx.git

Alternatively, you can download a copy of the repository using the download button on the GitHub
main page.

The following instructions apply virtually to any installation:

Step 1: Backup the USBX distribution disk and store it in a safe location.

Step 2:
Use the same directory in which you previously installed ThreadX on the host
hard drive. All USBX names are unique and will not interfere with the previous
USBX installation.

Step 3:
Add a call to ux_system_initialize at or near the beginning of
tx_application_define. This is where the USBX resources are initialized.

Step 4: Add a call to ux_host_stack_initialize.

Step 5 Add one or more calls to initialize the required USBX

Step 6 Add one or more calls to initialize the host controllers available in the system

Step 7
It may be required to modify the tx_low_level_initialize.c file to add low level
hardware initialization and interrupt vector routing. This is specific to the
hardware platform and will not be discussed here.

Step 8

Compile application source code and link with the USBX and ThreadX run time
libraries (FileX and/or Netx may also be required if the USB storage class
and/or USB network classes are to be compiled in), ux.a (or ux.lib) and tx.a (or
tx.lib). The resulting can be downloaded to the target and executed!

3.4. Configuration Options
There are several configuration options for building the USBX library and these are located in the
ux_user.h.

Following are some examples of configuration options:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://github.com/eclipse-threadx/usbx.git

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 17 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Host Stack Device Stack
UX_PERIODIC_RATE
This value represents how many
ticks per seconds for a specific
hardware platform. The default is
1000 indicating 1 tick per
millisecond.

UX_MAX_SLAVE_CLASS_DRIVER
This is the maximum number of USBX
classes that can be registered via
ux_device_stack_class_register.

UX_MAX_HCD
This value represents the number of
different host controllers that are
available in the system. For USB 1.1
support, this value will mostly be
1. For USB 2.0 support this value
can be more than 1. This value
represents the number of concurrent
host controllers running at the
same time. If for instance, there
are two instances of OHCI running
or one EHCI and one OHCI controllers
running, the UX_MAX_HCD should be
set to 2.

UX_THREAD_PRIORITY_DCD
This is the ThreadX priority value
for the device controller thread.

UX_MAX_DEVICES
This value represents the maximum
number of devices that can be
attached to the USB. Normally, the
theoretical maximum number on a
single USB is 127 devices. This
value can be scaled down to conserve
memory. It should be noted that this
value represents the total number
of devices regardless of the number
of USB buses in the system.

UX_ NO_TIME_SLICE
Defined, the ThreadX target port does
not use time slices.

UX_MAX_ED
This value represents the maximum
number of EDs in the controller
pool. This number is assigned to
one controller only. If multiple
instances of controllers are
present, this value is used by each
individual controller.

UX_SLAVE_REQUEST_DATA_MAX_LENGTH
This value represents the maximum
number of bytes received on a bulk
endpoint in the device stack. The
default is 4096 bytes but can be
reduced in memory constraint
environments.

UX_THREAD_STACK_SIZE
This value is the size of the stack in bytes for the USBX threads. It can
be typically 1024 or 2048 bytes depending on the processor used and the host
controller.
UX_MAX_HOST_LUN
This value represents the maximum
number of SCSI logical units
represented in the host storage
class driver.

UX_MAX_SLAVE_LUN
This value represents the current
number of SCSI logical units
represented in the device storage class
driver.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 18 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

The complete lists of the configuration options are described in section “Configuration options”
of chapter 3 of the USBX User Guide

Additional development tool options are described in the readme_usbx.txt file supplied on the
distribution disk

3.5. Troubleshooting
USBX is delivered with a demonstration file and a simulation environment. It is always a good idea
to get the demonstration platform running first—either on the target hardware or a specific
demonstration platform.
In addition, it’s also very useful to examine the traffic on the USB bus using a USB Protocol
Analyzer. This information is also very useful to provide when contacting support.

If you encounter any bugs, have suggestions for new features, or if you would like to become an
active contributor to this project, please follow the instructions provided in the contribution guideline
for the corresponding repo.

3.6. USBX Version ID
The current version of USBX is available to both the user and the application software during
runtime.
The programmer can obtain the USBX version from examination of the ux_port.h file. In addition,
this file also contains a version history of the corresponding port. Application software can obtain
the USBX version by examining the global string _ux_version_id, which is defined in ux_port.h.

4. FUNCTIONAL COMPONENTS OF THE USBX

This chapter includes a description of the high performance USBX embedded USB host stack and
device stack from a functional perspective.

4.1. Execution Overview of the USB Device Stack
USBX for the device is composed of several components:

• Initialization
• USB Device Classes
• USB Device Stack
• Device Controller
• VBUS manager
• Application Interface Calls

Following figure illustrates the USBX Device stack:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 19 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Figure 2: Illustration of USBX Device Stack

(Source: USBX User Guide (Device Stack) [D1])

4.1.1. Initialization

In order to activate USBX, the function ux_system_initialize must be called. This function initializes
the memory resources of USBX.

In order to activate USBX device facilities, the function ux_device_stack_initialize must be
called. This function will in turn initialize all the resources used by the USBX device stack such
as ThreadX threads, mutexes, and semaphores.
It is up to the application initialization to activate the USB device controller and one or more USB
classes. Contrary to the USB host side, the device side can have only one USB controller driver
running at any time. When the classes have been registered to the stack and the device
controller(s) initialization function has been called, the bus is active and the stack will reply to bus
reset and host enumeration commands.

4.1.2. Application Interface Calls

There are two levels of APIs in USBX:
• USB Device Stack APIs (refer to section 4.1.3), and
• USB Device Class APIs (refer to section 4.1.4),

Normally, an USBX application should not have to call any of the USB Host Stack APIs. Most
applications will only access the USB Host Classes APIs.

4.1.3. USB Device Stack

The device stack APIs are responsible for the registration of USBX device components such as
classes and the device framework.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 20 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Following table lists a subset of the USBX Device Stack services and their descriptions:

Prototype Description

UINT
ux_device_stack_alternate_setting_get
(ULONG interface_value)

This function is used by the USB host to obtain
the current alternate setting for a specific
interface value. It is called by the controller
driver when a GET_INTERFACE request is
received.
Return Values
UX_SUCCESS (0x00) The data transfer was
completed.
UX_ERROR (0xFF) Wrong interface value.

UINT ux_device_stack_configuration_get
(VOID)

This function is used by the host to obtain the
current configuration running in the device.
Return Values
UX_SUCCESS (0x00) The data transfer was
completed.

UINT ux_device_stack_endpoint_stall
(UX_SLAVE_ENDPOINT *endpoint) This function is called by the USB device class

when an endpoint should return a Stall
condition to the host.
Return Values
UX_SUCCESS (0x00) The operation was
successful.
UX_ERROR (0xFF) The device is in an invalid
state.

The complete list of the USBX Device Services and their descriptions can be found in chapter
4 of the USB User Guide (Device Stack) [D1].

4.1.4. USB Device Classes

The Device Class APIs are very specific to each USB class. Most of the common APIs for USB
classes provided services such as opening/closing a device and reading from and writing to a
device.

Storage Class
The storage class is in charge of answering storage class specific control requests and handling
storage class protocol commands.
The USB device storage class allows for a storage device embedded in the system to be made
visible to a USB host.
The USB device storage class does not by itself provide a storage solution. It merely accepts and
interprets SCSI requests coming from the host. When one of these requests is a read or a write

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 21 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

command, it will invoke a pre-defined call back to a real storage device handler, such as an ATA
device driver or a Flash device driver.

Refer to Storage part in Chapter 5 for more information

CDC Class
The CDC class is in charge of answering CDC class specific control requests and offering ways to
communicate with host through data pipes. Following functionalities are supported now:

• CDC-ACM (or CDC/ACM): communicate with host as a serial device

The USB device CDC-ACM class allows for a USB host system to communicate with the device
as a serial device. This class is based on the USB standard and is a subset of the CDC
standard. Following table lists a subset of the USBX Device CDC-ACM Class APIs:

Prototype Description
UINT
ux_device_class_cdc_acm_ioctl (
UX_SLAVE_CLASS_CDC_ACM *cdc_acm,
ULONG ioctl_function, VOID
*parameter)

This function is called when an application needs to
perform various ioctl calls to the cdc acm interface.

Return Values
UX_SUCCESS (0x00) This operation was successful.
UX_Error (0X00) Error from function.

UINT
ux_device_class_cdc_acm_read(UX_SL
AVE_CLASS_CDC_ACM *cdc_acm, UCHAR
*buffer, ULONG requested_length,
ULONG *actual_length)

This function is called when an application needs to
read from the OUT data pipe (OUT from the host, IN
from the device). It is blocking.

Return Values
UX_SUCCESS (0x00) This operation was successful.

UX_CONFIGURATION_HANDLE_UNKNOWN (0x51)
Device is no longer in the configured state

UX_TRANSFER_NO_ANSWER (0X22) No answer
from device. The device was probably disconnected
while the transfer was pending.

UX_TRANSFER_BUFFER_OVERFLOW (0X27)
Transfer buffer overflow, inside a USB packet, host
sending more bytes than available buffer.

Note the function reads bytes from the host
packet by packet. If the prepared buffer size is

smaller than a packet and the host sends more data
than expected (in other words, the prepared buffer
size is not a multiple of the USB endpoint's max
packet size), then buffer overflow will occur. To avoid
this issue, the recommended way to read is to allocate
a buffer exactly one packet size (USB endpoint max
packet size). This way if there is more data, the next

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 22 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

read can get it and no buffer overflow will occur. If
there is less data, the current read can get a short
packet instead of generating an error.

UINT
ux_device_class_cdc_acm_write_with
_callback(UX_SLAVE_CLASS_CDC_ACM
*cdc_acm,UCHAR *buffer, ULONG
requested_length)

This function is called when an application needs to
write to the IN data pipe (IN from the host, OUT from
the device). This function is non-blocking and the
completion will be done through a callback.

Return Values
UX_SUCCESS (0x00) This operation was successful.
UX_CONFIGURATION_HANDLE_UNKNOWN (0x51)
Device is no longer in the configured state
UX_TRANSFER_NO_ANSWER (0X22) No answer
from device. The device was probably disconnected
while the transfer was pending.

Refer to chapter 5 of the “USBX User Guide” [D1] for the complete list of the CDC-ACM Class
APIs and their descriptions.

• CDC/ECM (or CDC-ECM): communicate with host as an ethernet device

The USB device CDC-ECM class allows for a USB host system to communicate with the device
as an ethernet device. This class is based on the USB standard and is a subset of the CDC
standard.

Refer to chapter 5 of the “USBX User Guide” [D1] for more details.

HID Class
The HID class is in charge of answering the HID class specific control requests and offering ways
to communicate host with HID class specific reports.
USBX HID device class is relatively simple compared to the host side. It is closely tied to the
behavior of the device and its HID descriptor.

Refer to HID part in Chapter “USBX User guide” [D1] for more information

Custom Class
For advanced developers, it’s possible to create more customized class, to answering customized
control requests and handling customized protocol on data pipes. Note such class may also require
specific customization on host side, too.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 23 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Storage Class
The storage class is in charge of answering storage class specific control requests and
handling storage class protocol commands.

The USB device storage class allows for a storage device embedded in the system to be made
visible to a USB host. The USB device storage class does not by itself provide a storage solution.
It merely accepts and interprets SCSI requests coming from the host.

When one of these requests is a read or a write command, it will invoke a pre-defined call back to
a real storage device handler, such as an ATA device driver or a Flash device driver.

Refer to Storage part in Chapter 5 of the “USBX User guide” [D1] for more information

4.1.5. VBUS Manager

In most USB device designs, VBUS is not part of the USB Device core but rather connected to an
external GPIO, which monitors the line signal.
As a result, VBUS has to be managed separately from the device controller driver.
It is up to the application to provide the device controller with the address of the VBUS IO. VBUS
must be initialized prior to the device controller initialization.
Depending on the platform specification for monitoring VBUS, it is possible to let the controller driver
handle VBUS signals after the VBUS IO is initialized or if this is not possible, the application has to
provide the code for handling VBUS.

If the application wishes to handle VBUS by itself, its only requirement is to call the function
ux_device_stack_disconnect() when it detects that a device has been extracted. It is not
necessary to inform the controller when a device is inserted because the controller will wake up
when the BUS RESET assert/deassert signal is detected.

4.1.6. Device Controller

The device controller driver (DCD) interoperates USB Device Stack operations to hardware actions.
Normally, a USBX application should not have to call device controller APIs, except initialization
function. When the device controller initialization function is called, the bus is active and the stack
will reply to bus reset and host enumeration commands through device controller driver.

Here are some possible hardware which USB Device Stack can operate on:
• Microchip chip with USB device controller
• OKI chip with USB device controller
• Philips chip with USB device controller
• Other chip with USB device controller, etc.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 24 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

4.1.7. USB Device Framework

The USB device side is responsible for the definition of the device framework. The device
framework is divided into three categories:

• Definition of the components of the Device Framework: The definition of each component of
the device framework is related to the nature of the device and the resources utilized by the
device. Following are the main categories.
� Device Descriptor
� Configuration Descriptor
� Interface Descriptor
� Endpoint Descriptor

USBX supports device component definition for both high and full speed (low speed being
treated the same way as full speed). This allows the device to operate differently when
connected to a high speed or full speed host. The typical differences are the size of each
endpoint and the power consumed by the device. The definition of the device component takes
the form of a byte string that follows the USB specification. The definition is contiguous and
the order in which the framework is represented in memory will be the same as the one
returned to the host during enumeration.

Refer to section “Definition of the components of the device framework” in chapter 3 of the
USB User Guide [D1] for an example of a device framework for a high
 speed Flash Disk.

• Definition of the Strings of the Device Framework: Strings are optional in a device. Their -
purpose is to let the USB host know about the manufacturer of the device, the product name,
and the revision number through Unicode strings. The main strings are indexes embedded in
the device descriptors. Additional strings indexes can be embedded into individual interfaces.
For more details refer to section “Definition of the strings of the device framework” in chapter
3 of the USB User Guide [D2].

Refer to section “Definition of the Strings of the device framework” in chapter 3 of the
USB User Guide [D1] for an example of a device framework for a high-speed Flash Disk.

• Definition of the Languages Supported by the Device Framework: USBX has the ability to
support multiple languages although English is the default. The definition of each language for
the string descriptors is in the form of an array of languages definition defined as follows:
#define LANGUAGE_ID_FRAMEWORK_LENGTH 2

UCHAR language_id_framework[] = {
 /* English. */
 0x09, 0x04
};

To support additional languages, simply add the language code double-byte definition after the
default English code.

The language code has been defined by Microsoft in the document: Developing
International Software for Windows 95 and Windows NT, Nadine Kano, Microsoft Press,
Redmond WA.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 25 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

4.2. Execution Overview of the USB Host Stack
USBX is composed of several components:

• Initialization
• Application interface calls
• Root Hub
• Host Classes
• Hub Class
• USB Host Stack
• Host Controller

The following diagram illustrates the USBX host stack.

Figure 3: Illustration of USBX Host stack

(Source: USBX Host Stack User Guide [D1])

4.2.1. Initialization

In order to activate USBX, the function ux_system_initialize must be called. This function
initializes the memory resources of USBX.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 26 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

In order to activate USBX device facilities, the function ux_host_stack_initialize must be called.
This function will in turn initialize all the resources used by the USBX device stack such as ThreadX
threads, mutexes, and semaphores.
It is up to the application initialization to activate at least one USB host controller and one or
more USB classes. When the classes have been registered to the stack and the host
controller(s) initialization function has been called the bus is active and device discovery can
start. If the root hub of the host controller detects an attached device, the USB enumeration
thread, in charge of the USB topology, will be wake up and proceed to enumerate the device(s).
It is possible, due to the nature of the root hub and downstream hubs, that all attached USB devices
may not have been configured completely when the host controller initialization function returns. It
can take several seconds to enumerate all USB devices, especially if there are one or more hubs
between the root hub and USB devices.

4.2.2. Application Interface Calls

here are two levels of APIs in USBX:

• USB Host Stack APIs (refer to section 4.2.3), and
• USB Host Class APIs (refer to section 4.2.4)

Normally, a USBX application should not have to call any of the USB host stack APIs. Most
applications will only access the USB Class APIs.

4.2.3. USB Host Stack

The USB host stack is the centrepiece of USBX und has three main functions:
• Manage the topology of the USB: The USB stack topology thread is awakened when a new

device is connected or when a device has been disconnected. Either the root hub or a regular
hub can accept device connections. Once a device has been connected to the USB, the
topology manager will retrieve the device descriptor. This descriptor will contain the number of
possible configurations available for this device. Most devices have one configuration only.
Some devices can operate differently according to the available power available on the port
where it is connected. If this is the case, the device will have multiple configurations that can
be selected depending on the available power. When the device is configured by the topology
manager, it is then allowed to draw the amount of power specified in its configuration descriptor.

• Bind a USB device to one or more classes: When the device is configured, the topology
manager will let the class manager continue the device discovery by looking at the device
interface descriptors. A device can have one or more interface descriptors.
An interface represents a function in a device. For instance, a USB speaker has three
interfaces, one for audio streaming, one for audio control, and one to manage the various
speaker buttons.
The class manager has two mechanisms to join the device interface(s) to one or more classes.
It can either use the combination of a PID/VID (product ID and vendor ID) found in the interface
descriptor or the combination of Class/Subclass/Protocol.
The PID/VID combination is valid for interfaces that cannot be driven by a generic class. The
Class/Subclass/Protocol combination is used by interfaces that belong to a USB-IF certified
class such as a printer, hub, storage, audio, or HID.
The class manager contains a list of registered classes from the initialization of USBX. The
class manager will call each class one at a time until one class accepts to manage the interface

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 27 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

for that device. A class can only manage one interface. For the example of the USB audio
speaker, the class manager will call all the classes for each of the interfaces.
Once a class accepts an interface, a new instance of that class is created. The class manager
will then search for the default alternate setting for the interface. A device may have one or
more alternate settings for each interface. The alternate setting 0 will be the one used by
default until a class decides to change it.
For the default alternate setting, the class manager will mount all the endpoints contained in
the alternate setting. If the mounting of each endpoint is successful, the class manager will
complete its job by returning to the class that will finish the initialization of the interface.

• Exports a certain number of APIs for the USB classes to perform interrogation on the device and
USB transfers on specific endpoints. APIs are described in detail in the USBX Host Device
Guide [D1].

The host stack APIs are responsible for the registration of USBX components (host classes and
host controllers), configuration of devices, and the transfer requests for available device endpoints.

Following table lists a subset of the USBX Host Stack APIs and their descriptions:

Prototype Description

UINT
ux_host_stack_initialize(UINT
(*system_change_function)
(ULONG, UX_HOST_CLASS *))

This function will initialize the USB host stack. The
supplied memory area will be setup for USBX
internal use. If UX_SUCCESS is
returned, USBX is ready for host controller and class
registration.
Return Values:
UX_SUCCESS (0x00) Successful initialization.
UX_MEMORY_INSUFFICIENT (0x12) A memory
allocation failed.

UINT ux_host_stack_endpoint_transfer_abort
(UX_ENDPOINT *endpoint) This function will cancel all transactions active or

pending for a specific transfer request attached to
an endpoint and return immediately. It the transfer
request has a callback function attached; the
callback function will be called with the
UX_TRANSACTION_ABORTED status.

Return Values

UX_SUCCESS (0x00) No errors.

UX_ENDPOINT_HANDLE_UNKNOWN 0x53)
Endpoint handle is not valid

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 28 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

UINT
ux_host_stack_class_get(UCHAR
*class_name, UX_HOST_CLASS **class)

This function returns a pointer to the class container
immediately. A class needs to obtain its container
from the USB stack to search for instances when a
class or an application wants to open a device.

Return Values

UX_SUCCESS (0x00) No errors, on return the
class field is field with the pointer to the class
container

UX_HOST_CLASS_UNKNOWN (0X59) Class
is unknown by the stack

UINT
ux_host_stack_class_instance_create(UX_H
OST_CLASS *class,VOID *class_instance)

This function creates a new class instance for a
class container and returns immediately. The
instance of a class is not contained in the class code
to reduce the class complexity. Rather, each class
instance is attached to the class container located in
the main stack.

Return Values

UX_SUCCESS (0x00) The class instance was
attached to the class container.

UINT
ux_host_stack_class_instance_destroy(UX_
HOST_CLASS *class,
VOID *class_instance)

This function destroys a class instance for a class
container. Return Values:

UX_SUCCESS (0x00) The class instance was
destroyed.
UX_HOST_CLASS_INSTANCE_UNKNOWN
(0x5b) The class instance is not attached to the class
container.

UINT
ux_host_stack_interface_endpoint_get(UX_
INTERFACE *interface,
UINT endpoint_index,
UX_ENDPOINT **endpoint)

This function returns an endpoint container based
on the interface handle and an endpoint index. It is
assumed that the alternate setting for the interface
has been selected or the default setting is being
used prior to the endpoint(s) being searched.
Return Values:

UX_SUCCESS (0x00) The endpoint container
exists and is returned.

UX_INTERFACE_HANDLE_UNKNOWN
(0x52) Interface specified does not exist.

UX_ENDPOINT_HANDLE_UNKNOWN (0x53)
Endpoint index does not exist.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 29 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

The complete list of the USBX Host Stack Services and their descriptions can be found in
chapter 4 of the USB Host Stack User Guide [D1]

4.2.4. USB Host Classes

The Class APIs are very specific to each USB class. Most of the common APIs for USB classes
provide services such as opening/closing a device and reading from and writing to a device.

Storage Class
The Storage class is in charge of enumerating and driving connected mass storage devices. It
is integrated with Eclipse FileX, the file system support module in Eclipse ThreadX, to offer
services to operate the connected media through FX_MEDIA interface.

CDC Class
The CDC class is in charge of enumerating and driving connected CDC devices. Currently two
functionalities are supported:

• CDC-ACM, the serial converter. Following table lists a subset of the USBX Device CDC-ACM
Class APIs:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 30 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Refer to chapter 5 of the “USBX Host User Guide” [D1] for the complete list of the CDCACM
class APIs and their descriptions.

Prototype Description
UINT
ux_host_class_cdc_acm_read(UX_HOST_CLASS
_CDC_ACM *cdc_acm, UCHAR *data_pointer,
ULONG requested_length, ULONG
*actual_length)

This function reads from the cdc_acm interface. The call is
blocking and only returns when there is either an error or
when the transfer is complete.

Return Values
UX_SUCCESS (0x00) The data transfer was completed.

UX_Error (0X00) Error from function

UX_HOST_CLASS_INSTANCE_UNK-NOWN (0x5b) The
cdc_acm instance is invalid

UX_TRANSFER_TIMEOUT (0X5c) Transfer timeout,
reading incomplete

UX_TRANSFER_BUFFER_OVER-FLOW
(0X27) Transfer buffer overflow, inside a USB packet, host
sending more bytes than available buffer

Note the function reads bytes from the device
packet by packet. If the prepared buffer size is

smaller than a packet and the device sends more data than
expected (in other words, the prepared buffer size is not a
multiple of the USB endpoint's max packet size), then
buffer overflow will occur. To avoid this issue, the
recommended way to read is to allocate a buffer exactly
one packet size (USB endpoint max packet size). This way
if there is more data, the next read can get it and no buffer
overflow will occur. If there is less data, the current read
can get a short packet instead of generating an error

UINT
ux_host_class_cdc_acm_ioctl
(UX_HOST_CLASS_CDC_ACM *cdc_acm, ULONG
ioctl_function, VOID *parameter)

This function is called when an application needs to perform
various ioctl calls to the cdc acm interface.

Return Values
UX_SUCCESS (0x00) The data transfer was completed

UX_MEMORY_INSUFFICIENT (0x12) Not enough
memory.

UX_HOST_CLASS_INSTANCE_UNK-NOWN
(0x5b) TCDC-ACM instance is in an invalid state

UX_FUNCTION_NOT_SUPPORTED (0x54)
Unknown IOCTL function

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 31 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

• CDC-ECM, the ethernet controller. This class is designed to be used with NetX, specifically,
the USBX CDC-ECM class acts as the driver for NetX.

Refer to USB Host CDC-ECM Class in Chapter 5 of “USBX Host User Guide” [D1] for more
information

HID Class
The HID class is in charge of enumerating and driving connect HID devices. The following
functionalities are supported by its client services:

• HID Keyboard
• HID Mouse
• HID Remote control

Refer to HID part in Chapter 5 of the USBX Host Device Guide [D1] for more information.

HUB Class
The hub class is in charge of driving USB hubs. A USB hub can either be a stand-alone hub or as
part of a compound device such as a keyboard or a monitor. A hub can be self-powered or bus
powered. Bus-powered hubs have a maximum of four downstream ports and can only allow for the
connection of devices that are either self-powered or bus-powered devices that use less than
100mA of power. Hubs can be cascaded. Up to five hubs can be connected to one another.

4.2.5. Host Controller

The USB host controller driver interoperates USB Host Stack operations to hardware actions.
Normally, a USBX application should not have to call host controller APIs, except initialization
function. When the host controller initialization function is called, the hardware is ready and the
stack will reply to detect bus events and start communication with connected devices.
Each host controller instance has one or more USB root hubs. The number of root hubs is either
determined by the nature of the controller or can be retrieved by reading specific registers from the
controller.

The host controller driver is responsible for driving a specific type of USB controller.
A USB host controller can have multiple controllers inside. For instance, certain Intel PC chipset
contain two UHCI controllers. Some USB 2.0 controllers contain multiple instances of an OHCI
controller in addition to one instance of the EHCI controller.

The Host controller will manage multiple instances of the same controller only. In order to drive
most USB 2.0 host controllers, it will be required to initialize both the OCHI controller and the EHCI
controller during the initialization of USBX.

The host controller is responsible for managing the following:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 32 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

• Root Hub: The root hub management is responsible for the powering up of each controller port
and determining if there is a device inserted or not. This functionality is used by the USBX
generic root hub to interrogate the controller downstream ports.

• Power management: The power management processing provides for the handling of
suspend/resume signals either in gang mode, therefore affecting all controller downstream
ports at the same time, or individually if the controller offers this functionality.

• Endpoints: The endpoint management provides for the creation or destruction of physical
endpoints to the controller. The physical endpoints are memory entities that are parsed by the
controller if the controller supports master DMA or that are written in the controller. The physical
endpoints contain transactions information to be performed by the controller.

• Transfers: Transfer management provides for a class to perform a transaction on each of the
endpoints that have been created. Each logical endpoint contains a component called
TRANSFER REQUEST for USB transfer requests. The TRANSFER REQUEST is used by the
stack to describe the transaction. This TRANSFER REQUEST is then passed to the stack and
to the controller, which may divide it into several sub transactions depending on the capabilities
of the controller.

4.2.6. USB Device Framework

A USB device is represented by a tree of descriptors. There are six main types of descriptors:

• Device descriptors: Each USB device has one single device descriptor. This descriptor
contains the device identification, the number of configurations supported, and the
characteristics of the default control endpoint used for configuring the device.

Refer to section “Device Descriptors” in chapter 4 of the USBX User Guide [D1] for more
details.

• Configuration descriptors: The configuration descriptor describes information about a specific
device configuration. A USB device may contain one or more configuration descriptors. The
bNumConfigurations field in the device descriptor indicates the number of configuration
descriptors. The descriptor contains a bConfigurationValue field with a value that, when used
as a parameter to the Set Configuration request, causes the device to assume the described
configuration.
The descriptor describes the number of interfaces provided by the configuration. Each interface
represents a logical function within the device and may operate independently. For instance, a
USB audio speaker may have three interfaces, one for audio streaming, one for audio control,
and one HID interface to manage the speaker’s buttons.
When the host issues a GET_DESCRIPTOR request for the configuration descriptor, all related
interface and endpoint descriptors are returned.

Refer to section “Configuration Descriptors” in chapter 4 of the USBX User Guide [D1] for
more details.

• Interface descriptors: The interface descriptor describes a specific interface within a
configuration. An interface is a logical function within a USB device. A configuration provides

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 33 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

one or more interfaces, each with zero or more endpoint descriptors describing a unique set
of endpoints within the configuration. When a configuration supports more than one interface,
the endpoint descriptors for a particular interface follow the interface descriptor in the data
returned by the GET_DESCRIPTOR request for the specified configuration.
An interface descriptor is always returned as part of a configuration descriptor. An interface
descriptor cannot be directly access by a GET_DESCRIPTOR request.
An interface may include alternate settings that allow the endpoints and/or their characteristics
to be varied after the device has been configured. The default setting for an interface is always
alternate setting zero. A class can select to change the current alternate setting to change the
interface behaviour and the characteristics of the associated endpoints. The SET_INTERFACE
request is used to select an alternate setting or to return to the default setting. Alternate settings
allow a portion of the device configuration to be varied while other interfaces remain in
operation. If a configuration has alternate settings for one or more of its interfaces, a separate
interface descriptor and its associated endpoints are included for each setting.

Refer to section “Interface Descriptors” in chapter 4 of the USBX Guide [D1] for more details.

• Endpoint descriptors: Each endpoint associated with an interface has its own endpoint
descriptor. This descriptor contains the information required by the host stack to determine the
bandwidth requirements of each endpoint, the maximum payload associated with the endpoint,
its periodicity, and its direction. An endpoint descriptor is always returned by a
GET_DESCRIPTOR command for the configuration.
The default control endpoint associated with the device descriptor is not counted as part of the
endpoint(s) associated with the interface and therefore not returned in this descriptor. When
the host software requests a change of the alternate setting for an interface, all the associated
endpoints and their USB resources are modified according to the new alternate setting.

Except for the default control endpoints, endpoints cannot be shared between interfaces.
Refer to section “Endpoint Descriptors” in chapter 4 of the USBX Host Device Guide [D1] for
more details.

• String descriptors: String descriptors are optional. If a device does not support string

descriptors, all references to string descriptors within device, configuration, and interface
descriptors must be reset to zero. String descriptors use UNICODE encoding, thus allowing
the support for several character sets. The strings in a USB device may support multiple
languages. When requesting a string descriptor, the requester specifies the desired language
using a language ID defined by the USB-IF.

To get the latest LANGID definitions go to
https://docs.microsoft.com/enus/windows/desktop/intl/language-identifier-constants-and-strings.
This page will change as new LANGIDs are added.

Note that the HID Primary LANGID (0x0FF) is not on the above list, however it is permanently
reserved and will never be reassigned.

String index zero for all languages returns a string descriptor that contains an array of two-byte
LANGID codes supported by the device. It should be noted that the UNICODE string is not 0

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings
https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings
https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings
https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings
https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings
https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings
https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings
https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings
https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings
https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings
https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 34 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

terminated. Instead, the size of the string array is computed by subtracting two from the size
of the array contained in the first byte of the descriptor.

Refer to section “String Descriptors” in chapter 4 of the USBX Host Device Guide [D1] for
more details.

• Functional descriptors: Functional descriptors are also known as class-specific descriptors. They

normally use the same basic structures as generic descriptors and allow for additional
information to be available to the class. For example, in the case of the USB audio speaker,
class specific descriptors allow the audio class to retrieve for each alternate setting the type of
audio frequency supported.

USBX maintains most device descriptors in memory, that is, all descriptors except the string and
functional descriptors.

Section “USBX Device Descriptor Framework in Memory” of chapter 4 of the USBX Host
Device Guide [D1] includes a diagram showing how these descriptors are stored and related.

5. QUALIFICATION OF THE USBX SOFTWARE

5.1. Quality Management System
The Eclipse Foundation’s quality policy is explained in “USBX Quality Management Document”
[D5].

Eclipse Foundation has established, documented, implemented, and currently maintains a quality
management system. The quality management effectiveness is continually improved in
accordance with the requirements defined by this organization.
Eclipse Foundation:

• has identified the processes needed for the quality management system and their
application throughout the organization,

• determined the sequence and interaction of these processes,
• determined criteria and methods needed to ensure that both the operation and control of

these processes are effective,
• ensures the availability of resources and information necessary to support the operation

and monitoring of these processes,
• monitors, measures and analyses these processes, and
• implements actions necessary to achieve planned results and continual improvement of

these processes.

These processes are managed by the organization in accordance with the requirements defined by
this organization.
Where Eclipse Foundation chooses to outsource any process that affects product conformity with
requirements, the organization ensures control over such processes. Controls of such outsourced
processes are identified within the quality management system.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 35 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

“USBX Quality Management Document” [D5] addresses following issues:

• Quality Management System
- General requirements
- Documentation requirements

• Management Responsibility
- Management commitment
- Customer focus
- Quality policy
- Planning
- Responsibility, authority and communication
- Management review

• Resource Management
- Provision of resources
- Competence, awareness, and training - Infrastructure and work environment

• Product Realization
- Planning of product realization
- Customer-related processes
- Design and development process
- Purchasing process
- Production and service provision
- Control of monitoring and measuring devices

• Measurement, Analysis, and Improvement
- Monitoring and measurement of the quality management performance
- Control of nonconforming products
- Data analysis
- Improvement

5.2. USBX Quality Assurance
Eclipse USBX utilizes a modified waterfall model for product development with phase overlap and
blending.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 36 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

Figure 4: Shell window (excerpt) of the USBX 6.1.11 test suite

The USBX Quality Document [D3] describes company guidelines on the product development
phases of the USBX software:

a) Requirements

The requirements for each new USBX version require analysis of the defects as well as features
asked by customers and marketing. Defects that are verified are always fixed in the new version.
Feature enhancements are subject to a cost-benefit analysis. Note that this analysis may include
fast prototyping. Naturally, not all new features are incorporated into each new release.

b) Design

USBX has three principal design goals: simplicity, scalability in size and high performance. In many
situations these goals are complementary, i.e. simpler, smaller software usually gives better
performance.

c) Implementation

USBX is implemented as a C library, which must be linked with the application software. The USBX
library typically consists of 313 object files that are derived from 313 C source files. There are also
17 C include files that are used in the C file compilation process. All the C source and include files
conform completely to the ANSI C standard.

USBX applications need access to two include files: ux_api.h and ux_port.h. The ux_api.h file
contains all the constants, function prototypes, and object data structures. This file is generic; i.e.,
it is typically the same for all processor support packages. The ux_port.h file is included by ux_api.h.
It contains processor and/or development tool specific information, including data type assignments
and interrupt management macros that are used throughout the USBX C source code. The
ux_port.h file also contains the USBX Duo port-specific ASCII version string _ux_version_id.

Eclipse USBX utilizes a software component methodology in its products. A software component is
somewhat similar to an object or class in C++. Each component provides a set of action functions
that operate on the internal data of the component. In general, components are not allowed access
to the global data of other components. The only exception to this rule is the System component. If
it were not for the design goal of scalable code size, component files would likely contain more than

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 37 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

one function. In general, Eclipse USBX recommends a “more than one function per-file” approach
to application development.

All USBX software conforms to a strict set of coding conventions. This makes it easier to understand
and maintain. In addition, it provides a reasonable template for application software conventions.
The coding conventions concern:

• USBX file names
• USBX name space
• USBX constant names
• USBX Struct and Typedef Names
• USBX Member Names
• USBX Local Data Names
• USBX Global Data Names
• USBX Function Names
• Source Code Indentation
• Comments

d) Verification

Each new version of USBX is subject to extensive verification prior to becoming an official release,
as detailed in “USBX Software Test Document” [D2]. This document describes the test suite and
documents the results of running the test along with the code coverage analysis. Each USBX
version must achieve 100% code coverage.
For verification details refer to chapter 5.3 of this document.

e) Maintenance

Defects and new feature requests are maintained in DevOps per Eclipse ThreadX development
process. All defects and new feature requests are maintained in this database.
Eclipse USBX source code version control is also accomplished via the standard source code
management system DevOps. Read privileges are given to all developers. However, write privilege
for each release is given only to the Eclipse ThreadX Project Lead.

5.3. Verification of the USBX Software
5.3.1. Master Test Plan for the USBX 6.1.11 USB access system

The USBX 6.1.11 test suite is comprised of 386 manual test cases that effectively perform functional
“black box” test over the entire USBX 6.1.11 library routines.
Each of the 386 tests in the USBX 6.1.11 test suite outputs the type of test performed as well as
the result of the test. Valid results are “SUCCESS” for successful completion, “ERROR” for
unsuccessful completion.
All services and features of the USBX 6.1.11 are tested and all test cases (i.e. 386) of the USBX
test suite were passed.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 38 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

5.3.2. Test Code Coverage Analysis

The test suite is executed on a PC host running Ubuntu 18.04.3 LTS operating system.
The compiler being used to generate validation executable is gcc: gcc

(Ubuntu 7.5.0-3ubuntu1~18.04)7.5.0)

gcov provides a coverage analysis. The version is: gcov

(Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0

USBX generic code coverage is performed by gcov test coverage suite.
The test was performed on 7424 lines and 3295 branches and shows 100% line / branch coverage
for each file (refer to USBX IEEE829 Software Coverage Report [D6] for more details).

5.3.3. USBX Static Analysis

IAR C-STAT test workbench is used for the static analysis. 807 source files, 784 functions and 51
Header files were analysed. No issues were found (refer to USBX CSTAT Report [D7] for the details
of the test results

5.4. Certification of USBX 6.1.11
For the USBX certification performed by third party bodies refer to chapter 1.4 of this safety manual.

Figure 4 : Shell window (excerpt) of the USBX 6.1.11 test suite

More details to test environment, planned and performed verification activities and
verification deliverables can be found the Master test plan for the USBX 6.1.11 USB
access system (i.e. USBX IEEE829 Software Test Document [D 3]).

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation AISBL Made available under the terms of CC-BY-NC-ND 4.0 Page 39 / 44

Safety Manual Document Status Released
Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.07.08

6. CONCLUSION

6.1. Backward Compatibility
USBX is backward compatible. Applications written for earlier versions of USBX will run without
change on the latest version.
The modifications done on new USBX versions are described in the code version information. Users
have to analyse the modifications to understand the differences between releases, since the
backward compatibility is guaranteed.

6.2. Compatibility with other systems
There are no USBX versions build on special pre-conditions.

6.3. Requirements not met
Requirements for each new version of USBX require an analysis of the defects as well as the “wish
list” features asked for by customers and marketing. Defects that are verified are always fixed in
the new version. Feature enhancements are subject to a cost-benefit analysis.
Note that this analysis may include fast prototyping. Naturally, not all new features are incorporated
into each new release.
All changes (e.g. enhancements, clean ups, bug fixes, new features), which have been
implemented since revision 6.0 are documented in the USBX Maintenance Report [D4].

6.4. Outstanding Anomalies
Each new USBX version is subject to extensive verification prior to becoming an official release.
Possible anomalies are either found internally by running the test suite comprised of 386 test cases
that effectively perform functional “black box” test over the entire USBX 6.1.11 library routines or
via reported customer problem.
Founded anomalies are recorded and their corrections are incorporated in the next new USBX
version.
According to the USBX IEEE829 Software Test document [D2] and USBX Maintenance Report [D4]
there are no outstanding anomalies in the current USBX version (i.e. version 6, revision 6.1.11).

6.5. Design Safe State
IEC 61508 defines a Safe State as “state of the Equipment Under Control when safety is achieved”.
IEC 61508-3 Annex D: “In certain circumstances, upon controlled failure of the system application,
the element (as an element a Hardware or Software element is meant) may revert to a design safe
state. In such circumstances, the precise definition of design safe state should be specified for
consideration by the integrator”.

ISO 26262 defines a Safe State as “operating mode of an item without an unreasonable level of
risk”.
The term Safe State does not concern USBX but furthermore it concerns the safety application
using the underlaying USBX services.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

© Eclipse Foundation Copy and distribution only with written permission of Eclipse Foundation Page 40 / 44

Safety Manual Document Status
Released

Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.05.17

 6.6. Functional Safety View
The safety standards require for software architecture design beside completeness and
correctness with respect to software requirement specification, freedom of intrinsic design faults,
testability, simplicity, understandability and predictable behaviour a fault tolerance (control of
failures) in addition.

 Some examples of software architecture design requirements are given in:
Table A.2 of IEC 61508-3 [S1]
Table 4 of ISO 26262-6 [S3] and
Table 3 of EN 50128 [S4]

Fault detection and diagnosis provides the basis for functional safety
countermeasures to minimize the consequences of failure.

 6.7. Data Integrity

Data integrity is fundamental component of information security and thereby safety.

In its broadest use, “data integrity” refers to the accuracy and consistency of data:

• received from the sensor(s)
• stored in volatile and non-volatile memory
• processed by CPU
• received via external communication interfaces
• exchanged on internal system interfaces
• data entered by the user

In view of the USBX application the data integrity concerns safety relevant data entered by the
user, safety data exchanged on internal system interfaces, safety data processed and stored in
volatile and non-volatile memory.

In view of higher Safety Integrity Levels (SIL) additional safety mechanisms to achieve high
data integrity are to be considered in the safety related application using USBX services.
Examples on some measures are given below:
 Securing of the USBX services by program flow monitoring
 Protection of safety related data by memory signature / data replication
 Validation of safety data entered by the user (range and plausibility checks, re-prompting

for invalid inputs, user prompting for data confirmation)
 Verification of data content integrity by information redundancy, data timing and

sequencing

 6.8. Interface between the safety related application and USBX stack
If USBX will be used in a safety related context, it can be beneficial to implement a safety layer
between the safety related application and the USBX Software. That safety layer acts as an error
screen giving useful information to the user when a failure is detected and would be analogous to
dialog screen applying when Window application fails.

© Eclipse Foundation Copy and distribution only with written permission of Eclipse Foundation Page 41 / 44

Safety Manual Document Status
Released

Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.05.17

The figure below shows the safety layer embedded between the safety related application and
USBX stack.

Figure 5: Usage of the USBX Software in a safety related context

The safety application itself has to implement failsafe principle i.e. entering of safe state for cases
when the timely delivery of messages is disturbed, delayed or not possible at all.

© Eclipse Foundation Copy and distribution only with written permission of Eclipse Foundation Page 42 / 44

Safety Manual Document Status
Released

Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.05.17

The safety layer (or alternatively the safety application) has to evaluate USBX fault handling by:

• Checking of the return code from the USBX API
• Cyclic monitoring the USBX system error information.

Note: USBX checks for internal system errors by setting breakpoint at the function calls
_ux_system_error_handler.

 The safety layer (or related application) should monitor the internal system status to
 determine if any internal errors in USBX have taken place

Creating of fault information screen for visual reporting of USBX interface and general
application fault information. When an applicable fault is detected, the user application
should use USBX to present this fault screen in addition to the internal fault processing
in the application

© Eclipse Foundation Copy and distribution only with written permission of Eclipse Foundation Page 43 / 44

Safety Manual Document Status
Released

Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.05.17

APPENDICES

Appendix [A]: TERMS AND ACRONYMS
[A1] Reference Documents

 Document
ID / (file)

Revision / Date

[D1] USBX: User Guide (Version 6)
(https://github.com/eclipse-threadx/rtos-docs/blob/main/rtos-
docs/usbx/index.md)

April 2022

[D2] USBX IEEE829 Software Test Document
(USBX_IEEE829_Software_Test_Document_04_25_2022.pdf)

April 25, 2022

[D3] USBX Quality Document
(USBX_Quality_Document_04_25_2022)

April 25, 2022

[D4] USBX Maintenance Report
(USBX_Maintenance_Report_04_25_2022.pdf)

April 25, 2022

[D5] USBX Quality Management Document
(USBX_Quality_Management_Document_04_25_2022.pdf)

April 25, 2022

[D6] USBX IEEE829 Software Coverage Report
(USBX_IEEE829_Software_Coverage_Report_04_25_2022.pdf)

April 19, 2022

[D7] USBX CSTAT Report
(USBX_CStat_report_08_15_2019.pdf)

Aug 15, 2019

[D8] Eclipse ThreadX: User Guide (Version 6)
(https://github.com/eclipse-threadx/rtos-docs/blob/main/rtos-docs/
threadx/index.md)

October 2020

[D9] Certification Report for Functional Safety
Report No.: P2GF0004

July 2022

[A2] Acronyms

Acronym Extended meaning

API Application Program Interface

ASIL Automotive Safety Integrity Level

© Eclipse Foundation Copy and distribution only with written permission of Eclipse Foundation Page 44 / 44

Safety Manual Document Status
Released

Document Version 1.0

USBX Version 6
A high-performance USB stack from Eclipse Foundation Release Date 2024.05.17

BDM Background Debug Mode

GUI Graphical User Interface

ICE In-circuit Emulation

I/O Input / Output

Mutex Mutual Exclusion

RAM Random Access Memory

ROM Read Only Memory

RTOS Real-Time Operating System

SIL Safety Integrity Level

	Disclaimer
	Copyright
	Licence
	Trademarks
	1. SCOPE
	1.1. Purpose
	1.2. Reference Standards
	1.3. Safety related applications – requirements on safety lifecycle and the supporting processes
	1.3.1. Safety related applications – requirements on safety lifecycle planning
	1.3.2. Safety related applications – requirements on documentation
	1.3.3. Safety related applications – requirements on configuration management
	1.3.4. Safety related applications – requirements on change management
	1.3.5. Safety related applications – risk management

	1.4. Safety certifications

	2. OVERVIEW OF USBX
	2.1. USBX features
	2.2. Products Highlights
	2.3. Host, Device, OTG & Extensive Class Support
	2.4. Powerful Services of USBX
	2.4.1. Complete USB Device Framework Support
	2.4.2. Easy-To-Use APIs
	2.4.3. Multiple Host Controller Support
	2.4.4. Software Scheduler

	2.5. Required knowledge to integrate USBX

	3. INSTALLATION OF USBX
	3.1. Host Considerations
	3.2. Target Considerations
	3.3. Product Distribution
	3.4. Configuration Options
	3.5. Troubleshooting
	3.6. USBX Version ID

	4. FUNCTIONAL COMPONENTS OF THE USBX
	4.1. Execution Overview of the USB Device Stack
	4.1.1. Initialization
	4.1.2. Application Interface Calls
	4.1.3. USB Device Stack
	4.1.4. USB Device Classes
	4.1.5. VBUS Manager
	4.1.6. Device Controller
	4.1.7. USB Device Framework

	4.2. Execution Overview of the USB Host Stack
	4.2.1. Initialization
	4.2.2. Application Interface Calls
	4.2.3. USB Host Stack
	4.2.4. USB Host Classes
	4.2.5. Host Controller
	4.2.6. USB Device Framework

	5. QUALIFICATION OF THE USBX SOFTWARE
	5.1. Quality Management System
	5.2. USBX Quality Assurance
	a) Requirements
	b) Design
	c) Implementation
	d) Verification
	e) Maintenance

	5.3. Verification of the USBX Software
	5.3.1. Master Test Plan for the USBX 6.1.11 USB access system
	5.3.2. Test Code Coverage Analysis
	5.3.3. USBX Static Analysis

	5.4. Certification of USBX 6.1.11

	6. CONCLUSION
	6.1. Backward Compatibility
	6.2. Compatibility with other systems
	6.3. Requirements not met
	6.4. Outstanding Anomalies
	6.5. Design Safe State
	6.6. Functional Safety View
	6.7. Data Integrity
	6.8. Interface between the safety related application and USBX stack

	APPENDICES
	Appendix [A]: TERMS AND ACRONYMS
	[A1] Reference Documents
	[A2] Acronyms

